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CONSTRUCTION OF BASIS FUNCTIONS AND THEIR APPLICATION

TO BOUNDARY-VALUE PROBLEMS OF MECHANICS OF CONTINUOUS MEDIA

UDC 517.9; 519.6; 530.1; 531.01G. V. Druzhinin

A unified method for constructing basis (eigen) functions is proposed to solve problems of mechanics
of continuous media, problems of cubature and quadrature, and problems of approximation of hyper-
surfaces. Numerical-analytical methods are described, which allow obtaining approximate solutions of
internal and external boundary-value problems of mechanics of continuous media of a certain class
(both linear and nonlinear). The method is based on decomposition of the sought solutions of the
considered partial differential equations into series in basis functions. An algorithm is presented for
linearization of partial differential equations and reduction of nonlinear boundary-value problems,
which are reduced to systems of linear algebraic equations with respect to unknown coefficients with-
out using traditional methods of linearization.

Key words: basis functions, boundary-value problem, linearization, invariant solutions, contin-
uous medium.

In the present work, we develop methods for solving linear and nonlinear boundary-value problems of me-
chanics of continuous media on the basis of global or local approximation of the sought solutions of equations and
boundary conditions by functions found by expansion of the solutions into series in terms of basis functions.

1. Construction of Basis Functions. The basis functions presented below are constructed on invariant
solutions of partial differential equations that admit a group of extensions (compressions) in terms of dependent
and independent variables and a group of translations in terms of independent variables. The fundamental works
related to construction of invariant solutions and basis functions are [1–4]. We consider the two-dimensional Laplace
equation

∆U ≡ ∂2U

∂x2
+
∂2U

∂y2
= 0. (1.1)

The invariant solution of Eq. (1.1) is sought in the form

U = xαJ(η), η = y/x, (1.2)

where α is an arbitrary real number. Substituting (1.2) into (1.1), we obtain

xα−2[(η2 + 1)J ′′ − 2η(α− 1)J ′ + α(α− 1)J ] = 0, (1.3)

where J ′ and J ′′ are the first and second derivatives with respect to η and xα−2 6= 0.
The solution of the differential equation (1.3) is sought in the form of the series

J =
∞∑
k=0

ckη
k. (1.4)

Substituting (1.4) into (1.3) and equating the coefficients at identical powers of η, we find the recurrent formula

ck+2 = − (α− k)(α− k − 1)
(k + 2)(k + 1)

ck,
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which allows us to express all even coefficients of series (1.4) via c0 and all odd coefficients via c1. We choose c0 and c1
as coefficients forming the initial basis. Then, we obtain the following polynomials that are the generic solution of
Eq. (1.3) for different α: Pα=1

k=0,1
= c0 + c1η, Pα=2

k=0,2
= c0(1 − η2) + c1η, Pα=3

k=0,3
= c0(1 − 3η2) + c1(η − η3/3), . . .

(α = 1, N and k = 0, α). We write the solution of Eq. (1.1) in the form

U(x, y) =
N∑
α=0

Aαx
αPα(η) =

N∑
α=0

AαUα(x, y)

= A0c00 +A1x(c01 + c11η) +A2x
2[c02(1− η2) + c12η] + . . .+ANx

NPNk (η),

where Aα are arbitrary coefficients to be determined; the number of these coefficients depends on the method for
solving the boundary-value problem and on the estimate of accuracy of the approximate solution.

The solutions found are generalized to n independent variables. The Laplace equation

∂2U

∂x2
1

+
∂2U

∂x2
2

+
∂2U

∂x2
3

+ . . .+
∂2U

∂x2
n

= 0 (1.5)

admits the invariant solutions

U = xα1 [J2(η2) + J3(η3) + . . .+ Jn(ηn)], η2 = x2/x1, . . . , ηn = xn/x1,

U = xα1 J(η), η = (x2 + x3 + . . .+ xn)/x1.

We write the generic polynomial solution of Eq. (1.5) for n = 3. We choose the invariant solution in the
form [3]

U(x1, x2, x3) = (a1x1 + b1)α(a2x2 + a3x3 + b)βJ(η), (1.6)

where η = (a2x2 + a3x3 + b)/(a1x1 + b1); a1, a2, a3, and b1 are arbitrary real or complex numbers (internal
parameters).

Substituting (1.6) into (1.5), we obtain the reduced equation

η2(η2 +D2)J ′′ − 2η[η2(α− 1)− βD2]J ′ + [η2α(α− 1) + β(β − 1)D2]J = 0

[D2 = (a2
2 + a2

3)/a2
1]. We write the solution of Eq. (1.5) for n = 3 in the form

U(x1, x2, x3) =
N−β∑
α=1−β

Aα(a1x1 + b1)α(a2x2 + a3x3 + b)βPαk (η,D) =
N−β∑
α=1−β

AαUα(x1, x2, x3, D),

where Pα=1−β
k=0,1

= η−β(c0 + c1η), Pα=2−β
k=0,2

= η−β [c0(1− η2/D2) + c1η], etc.
Similarly, we construct polynomial basis functions for the wave equation. Note, these polynomials coincide

with polynomials for the Laplace equation if all minus signs are replaced by plus signs. The solutions found are
generalized to n independent variables, i.e., to the equation

∂2U

∂x2
n

=
∂2U

∂x2
1

+
∂2U

∂x2
2

+
∂2U

∂x2
3

+ . . .+
∂2U

∂x2
n−1

. (1.7)

The generic solution of Eq. (1.7) for n = 4 has the form

U(x1, x2, x3, x4) = (a1x1 + b1)α(a2x2 + a3x3 + a4x4 + b)βJ(η), (1.8)

where η = (a2x2 + a3x3 + a4x4 + b)/(a1x1 + b1). By direct verification, we can see that the solution

U(x1, x2, . . . , xn) =
N∑
α=0

Aαx
α
n(c0α|η + 1|α + c1α|η − 1|α), η =

x1 + x2 + . . .+ xn−1

xn

also satisfies Eq. (1.7). Here, α is an arbitrary real number; c0α and c1α are arbitrary constants.
Systems of basis functions for the Laplace equation and wave equation can be used to solve problems of

statics and dynamics of the theory of elasticity with the use of generic solutions of the type of solutions found by
Papkovich and Neuber, Galerkin, Trefftz, Sternberg and Eubanks, et al. [5, 6].
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For the heat-conduction equation

∂U

∂t
=
∂2U

∂x2
, (1.9)

we write the invariant solution in the form U = tα/2J(η), where η = x/
√
t. Then, we obtain the solution of Eq. (1.9)

U(x, t) =
N∑
α=0

Aαt
α/2Pαk (η),

where Pα=0
k=0 = c0, Pα=1

k=1 = c1η, Pα=2
k=0,2 = c0(1 + η2/2), Pα=3

k=1,3 = c1(η + η3/6), etc.
The solutions found above are generalized to n independent variables. The invariant solution of the equation

∂U

∂xn
=
∂2U

∂x2
1

+
∂2U

∂x2
2

+
∂2U

∂x2
3

+ . . .+
∂2U

∂x2
n−1

can be chosen, for instance, as

U = xα/2n [J1(η1) + J2(η2) + J3(η3) + . . .+ Jn−1(ηn−1)],

where η1 = x1/
√
xn, η2 = x2/

√
xn, η3 = x3/

√
xn, . . ., ηn−1 = xn−1/

√
xn.

We consider the algorithm for obtaining basis functions on the basis of homogeneous coordinates by the
example of the solution of the Laplace equation. For Eq. (1.5), for n = 3, we write the solution in the form [3]

U(x1, x2, x3) = Φ(ξ, η) (1.10)

(ξ = x2/x1 and η = x3/x1). Substituting (1.10) into (1.5) for x1 6= 0, ξ = iξ∗, and η = iη∗ (i2 = −1), we obtain an
equation of the form

(1− ξ∗2)
∂2Φ
∂ξ∗2

− 2ξ∗η∗
∂ξ∗2

∂ξ∗ ∂η∗
+ (1− η∗2)

∂ξ∗ ∂η∗

∂η∗2
− 2ξ∗

∂Φ
∂ξ∗
− 2η∗

∂Φ
∂η∗

= 0.

This equation can be reduced to the wave equation and Laplace equation in new coordinates µ and ν by the following
substitution:

— for µ = η∗/(ξ∗ − 1) and ν =
√
ξ∗2 + η∗2 − 1/(ξ∗ − 1), we obtain the wave equation

∂2Φ
∂µ2

− ∂2Φ
∂ν2

= 0;

— for µ = η∗/(ξ∗ − 1) and ν =
√

1− ξ∗2 − η∗2/(ξ∗ − 1), we obtain the Laplace equation

∂2Φ
∂µ2

+
∂2Φ
∂ν2

= 0.

Let us consider, e.g., the second case. Using the results obtained previously, we write the extended solution
of Eq. (1.5)

U(x1, x2, x3) =
N∑
α=1

Aαµ
αPα(Θ),

where Θ = ν/µ, Pα=1
1,k=0,1

= c0 + c1Θ = c0 + c1i
√
x2

1 + x2
2 + x2

3/x3, Pα=2
1,k=0,2

= c0(1 − Θ2) + c1Θ = c0(x2
1 + x2

2

+ 2x2
3)/x2

3 + c1i
√
x2

1 + x2
2 + x2

3/x3, etc.
The invariant solutions presented above are generalized to equations with n independent variables, if the

solution is chosen in the form

U(x1, x2, . . . , xn) = Φ1

(x2

x1
,
x3

x1

)
+ Φ2

(x2

x1
,
x4

x1

)
+ . . .+ Φn−2

(x2

x1
,
xn
x1

)
.

Note, the Laplace equation ∆U(x1, x2, x3) = 0 in choosing new independent variables ξ = x2/x1 and
η = x3/x1 and conversion of the resultant equation to the canonical form transforms again to the Laplace equation [6]
∆U(µ, ν) = 0, where µ and ν are expressed in terms of the homogeneous constants x2/x1 and x3/x1. By analogy
with the two-dimensional space, we can introduce the function of a complex variable that depends from three
rather than two independent variables: W (ρ) = U(µ, ν) + iV (µ, ν), where ρ(x1, x2, x3) = µ + iν. In this case,
the function U(µ, ν) satisfies the Laplace equation, and the function V (µ, ν) is found from the Cauchy–Riemann
condition.
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We show the relation of the previously found basis functions with hypergeometric Gaussian functions. For
the wave equation (1.7) with n = 4, we choose an invariant solution of the form (1.8) for β = 0. Substituting (1.8)
into (1.7), we obtain the reduced equation

(η2 −D)J ′′ − 2η(α− 1)J ′ + α(α− 1)J = 0, (1.11)

where D = (a2
4 − a2

2 − a2
3)/a2

1.
Using the substitution J = y(ξ), η = −D+ 2Dξ, we transform Eq. (1.11) to the differential equation (in the

normal Gaussian form)

ξ(1− ξ)y′′ + [−(α− 1) + 2(α− 1)ξ]y′ − α(α− 1)y = 0,

whose hypergeometric series has the form

F (−α,−α+ 1,−α+ 1, ξ) = 1− αξ − α(−α+ 1)
1 · 2

ξ2

− . . .− α(−α+ 1)(−α+ 2) · · · (−α+ k − 1)
k!

ξk − . . . =
∞∑
k=0

(−α)k

(1)k
ξk.

If α is positive integer, the solution of Eq. (1.7) takes the form

U(x1, x2, x3, x4) =
N∑
α=0

(a4x4 + b4)AαF (−α,−α+ 1,−α+ 1, ξ), (1.12)

where ξ = η/(2D) − 1/2. The solution of the type (1.12) is also valid for the Laplace equation (1.5) for n = 3,
β = 0, and D = (a2

2 + a2
3)/a2

1.

The expression in brackets (ψ, g) =
n∑
k=1

( ∂ψ
∂yk

∂g

∂xk
− ∂ψ

∂xk

∂g

∂yk

)
is called Poisson’s bracket [6]. We equate

this expression to zero, preliminary replacing g by g = ∂ψ/∂yk:
n∑
k=1

( ∂ψ
∂yk

∂2ψ

∂xk ∂yk
− ∂ψ

∂xk

∂2ψ

∂y2
k

)
= 0. (1.13)

We choose the invariant solution in the form

ψ =
n∑
k=1

(a1kxk + b1k)αJk(ηk), ηk =
a2kyk + b2k
ak1xk + b1k

. (1.14)

Substituting (1.14) into (1.13), we obtain
n∑
k=1

[
(α− 1)(J ′k)2 − αJkJ ′′k

]
= 0.

The sought functions Jk(ηk) in this expression are determined from identical differential equations whose solution
is written in the form Jk(ηk) = (c̃0kηk + c̃1k)α (c̃0k and c̃1k are integration constants). With allowance for the last
expression, the invariant solution (1.14) takes the form

ψ =
n∑
k=1

(c1kxk + c0kyk + dk)α,

where dk = c1kb1k + c0kb2k, c0k = c̃0ka2k, c1k = c̃1ka1k, and α, c0k, c1k, and dk are arbitrary real or complex
numbers.

Owing to specific properties of Eq. (1.14), its solution for k = 1 (x1 = x, y1 = y) can be written in the form

ψ(x, y) =
N∑
α=0

Aα(c1x+ c0y + d1)α +
N∑
α=1

Bα
1

(c1x+ c0y + d2)α
, (1.15)

where Aα and Bα are coefficients to be determined. To obtain the Laurent series from expression (1.15), we set
c1 = 1, c0 = i, d1 = d2 = −a, z = x+ iy, N →∞, i2 = −1, and

Aα ≡ ak =
1

2πi

∮
c

1
(ζ − a)k+1

f(ζ) dζ, Bα ≡ bk =
1

2πi

∮
c

(ζ − a)k−1f(ζ) dζ.
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Then, we obtain the Laurent series

ψ(z) =
∞∑
k=0

ak(z − a)k +
∞∑
k=1

ak(z − a)−k.

We can easily show that the solution (1.15) satisfies the wave equation for c0 = c1 and the Laplace equation
and biharmonic equation for c1 = ic0.

2. Solution of Inhomogeneous Equations with Variable Coefficients. We consider the equation

φ1(x, y)
∂2U

∂x2
+ φ2(x, y)

∂2U

∂y2
= f(x, y), (2.1)

where φ1(x, y) and φ2(x, y) are arbitrary functions that can be approximated by homogeneous polynomials Pα−2(η)
(see Sec. 1):

φ1(x, y) =
N∑
α=2

Cαx
α−2Pα−2(η), φ2(x, y) =

N∑
α=2

Dαx
α−2Pα−2(η).

The function f(x, y) is set by the expression

f(x, y) = B0 +B1xP1(η) +B2x
2P2(η) +B3x

3P3(η) + . . . . (2.2)

Here Cα, Dα, and Bα are specified approximation coefficients and η = y/x.
We seek the solution of Eq. (2.1) in the form

U = x2J2(η) + x3J3(η) + x4J4(η) + . . . . (2.3)

We substitute (2.2) and (2.3) into (2.1) and equate the expressions at identical powers of x in the resultant
equality. We obtain a system of inhomogeneous ordinary differential equations with respect to the sought func-
tions Jα, whose solution is found sequentially beginning from α = 2 (the solution of the homogeneous Laplace
equation for α > 2 is given in Sec. 1). Knowing the solutions of the homogeneous equation, we find the solution of
the inhomogeneous differential equation. The method for solving equations of the type (2.1) is applied to canoni-
cal equations of mathematical physics with variable coefficients and also to all linear partial differential equations
that admit a group of extensions (compressions) in terms of dependent and independent variables and a group of
translations in terms of independent variables and is generalized to n independent variables.

3. Reduction of Nonlinear Boundary-Value Problems of Mechanics to Systems of Linear
Algebraic Equations. For many equations and their systems with an appropriate choice of basis functions, the
boundary-value problems considered are reduced to systems of linear algebraic equations (SLAE) without using
traditional methods of linearization. Linearization is performed by choosing basis functions that are solutions of
equations of mathematical physics and also the equation obtained on the basis of Poisson’s bracket. Such equations
and their systems include the Navier–Stokes equations for the potential flow in steady and unsteady cases, the
Helmholtz equation, the equation and boundary conditions of the Plateau problem, the Monge–Ampère equations,
and the Kármán system of equations [6].

We demonstrate this approach by constructing the algorithm for solving the Helmholtz equation

∂F

∂η

∂∆F
∂ξ
− ∂F

∂ξ

∂∆F
∂η

= ∆2F, (3.1)

where ∆2 is a biharmonic operator, ψ(x, y) = νF (ξ, η), ξ = xu∞/ν, and η = yu∞/ν.
We supplement Eq. (3.1) by the following boundary conditions:

∂F

∂η

∣∣∣
C

= f0(s),
∂F

∂ξ

∣∣∣
C

= f1(s),
∂F

∂η

∣∣∣
η→∞

= 1,
∂F

∂ξ

∣∣∣
η→∞

= 0

if the equation of the contour C is given in a parametric form ξ = ξ(s) and η = η(s).
We seek the solution of Eq. (3.1) in the form (see Sec. 1)

F (ξ, η) =
∑
α

Aα(c0η + c1ξ + d)α + η (α < 0),

where d, c0, and c1 are free internal parameters to be prescribed. Substituting this solution into the initial Eq. (3.1),
in the domain G we obtain the linearized equation with respect to unknown coefficients Aα:
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c1(c21 + c20)
∑
α

Aαα(α− 1)(α− 2)(c0η + c1ξ + d)α−3

= (c21 + c20)2
∑
α

Aαα(α− 1)(α− 2)(α− 3)(c0η + c1ξ + d)α−4.

We solve the problem by the method of weighted residues [6]. The longitudinal and transverse components of
velocity of the liquid (gas) flow and the vorticity along the z axis are

v =
[
−
∑
α

Aαα(c0η + c1ξ + d)α−1
]
c1u∞, u =

[
c0
∑
α

Aαα(c0η + c1ξ + d)α−1 + 1
]
u∞,

ωz =
1
2

(∂v
∂x
− ∂u

∂y

)
6= 0.

Note, if we replace c0 by ic1 (i2 = −1) in the solution F (ξ, η), we obtain rational basis functions determined
by separation of the imaginary and real parts. These rational basis functions satisfy Eq. (3.1) identically. In solving
the problem by the method of weighted residues, the residues are formed only on the boundary.

Let us give another example. By introducing the stress function ϕ(x, y) and the stream function ψ(x, y),
we can write the nonlinear differential equations that describe deformation of a rigidly plastic inhomogeneous body
(with allowance for plasticity of the general type) in the form [7–10]

(ϕyy − ϕxx)2 + 4ϕ2
xy = 4k2(x, y); (3.2)

(ϕyy − ϕxx)(ψxx − ψyy) + (−4ϕxy)ψxy = 0, (3.3)

where k(x, y) is a known function (yield strength), σx = ∂2ϕ/∂y2, σy = ∂2ϕ/∂x2, τxy = −∂2ϕ/∂x ∂y, u =
∂ψ/∂y, and v = −∂ψ/∂x. System (3.2), (3.3) should be supplemented by boundary conditions in stresses and
displacements [9].

We introduce new independent variables

ξ = a1x+ λ1y + d1, η = b2x+ λ2y + d2, (3.4)

where a1, λ1, d1, b2, λ2, and d2 are arbitrary real or complex numbers. Then, Eq. (3.2) takes the form[
(λ2

1 + a2
1)ϕξξ + 2

√
(λ2

1 + a2
1)(λ2

2 + b22)ϕξη − (λ2
2 + b22)ϕηη

]2
+4ϕξη

{[
a1b2 + λ1λ2 −

√
(λ2

1 + a2
1)(λ2

2 + b22)
]
(λ2

1 + a2
1)ϕξξ

+
[
a1b2 + λ1λ2 +

√
(λ2

1 + a2
1)(λ2

2 + b22)
]
(λ2

2 + b22)ϕηη
}

+ 2(a1b2 + λ1λ2)2ϕξξϕηη = 4k̄2(ξ, η). (3.5)

This approach allows obtaining equations of all three types, depending on the choice of parameters in
transformation (3.4) and an appropriate combination of terms in expression (3.5). Let a1b2 + λ1λ2 = 0; then,
expression (3.5) reduces to the form

(λ2
1 + a2

1)2
[
ϕξξ −

(λ2

a1

)2

ϕηη + 2
∣∣∣λ2

a1

∣∣∣ϕξη]2 − 4(λ2
1 + a2

1)2
∣∣∣λ2

a1

∣∣∣ϕξη[ϕξξ − (λ2

a1

)2

ϕηη

]
= 4k̄2(ξ, η). (3.6)

For simplicity, we assume that a1 = λ2. Substituting the hyperbolic basis functions (see Sec. 1) into expression (3.6),
we linearize the latter with respect to the sought function after extracting the square root.

In the general case, where some coefficients in transformation (3.4) are complex numbers, if the equality
a1b2 + λ1λ2 =

√
(λ2

1 + a2
1)(λ2

2 + b22) is satisfied, Eq. (3.5) can be written in the following form (e.g., λ1 = 0,
λ2 =

√
3/2, b2 = 2/

√
2, and a1 =

√
3/2 + i

√
2/2):[

(λ2
1 + a2

1)ϕξξ + 2
√

(λ2
1 + a2

1)(λ2
2 + b22)ϕξη − (λ2

2 + b22)ϕηη
]2

+ 2(a1b2 + λ1λ2)ϕηη(γ1ϕξη + γ2ϕξξ) = 4k̄2(ξ, η). (3.7)

Here γ1 = 4(λ2
2 + b22) and γ2 = a1b2 + λ1λ2.

We consider the equation

γ1ϕξη + γ2ϕξξ = 0. (3.8)
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Substituting the invariant solution ϕ = ηαJ(ϑ), ϑ = ξ/η into (3.8), we obtain the equation

ηα−2[(γ1 − ϑγ2)J ′′ + γ2(α− 1)J ′] = 0 (ηα−2 6= 0),

whose solution is the function

J(ϑ) = (−c1/γ2)(γ1 − γ2ϑ)α + c2,

where c1 and c2 are constants of integration and α is an arbitrary real or complex number. Then, the solution of
Eq. (3.8) is written as

ϕ(ξ, η) =
∑
α

Aα

[
− c1
γ2

(γ1η − γ2ξ)α + c2η
α
]

(3.9)

(Aα are coefficients to be determined). After substitution of (3.9) into (3.7), the latter is linearized with respect to
the sought function. Having solved the problem in stresses, we solve Eq. (3.3) using, for instance, hyperbolic basis
functions.

Finally, we note the following features of the basis functions presented in this work. The basis functions have
a good structure and convenient analytical and computational properties. For instance, for the Laplace equation,
the spherical harmonics have a scatter of coefficients within the range from 35/128 to 4,341,887,550, whereas the
functions in the present work have a scatter from 1 to 126. In many cases, the spatial dimension is reduced by
unity. The solutions are presented in an analytical form; therefore, the formulation and solution of the problems of
parametric identification and inverse problems are simplified. Both linear and nonlinear mathematical models are
reduced to linear algebraic equations. Knowing the analytical solution and boundary conditions, due to internal
parameters (c0, c1, a1, b2, . . .), one can eliminate all singularities associated with solving SLAE. After substitution
of the basis functions (1.15) satisfying Eq. (1.13) into nonlinear differential equations belonging to a certain class,
the latter are reduced to SLAE without using traditional methods of linearization.
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